Beiträge zum System BaO-NiO

H. KRISCHNER, K. TORKAR, UND B. O. KOLBESEN

Institut für Physikalische und Theoretische Chemie der Technischen Hochschule, Graz, Austria

Received November 2, 1970

BaNiO₂, BaNiO₃, sowie Verbindungen der Zusammensetzung BaNiO_x (x = 2.75 bis 2.55) wurden hergestellt. Röntgenstrukturuntersuchungen bewiesen, daß in BaNiO₂ eine quadratisch planare Koordination der Sauerstoffionen um das Ni²⁺ vorliegt; während Nickel in BaNiO₃ oktaedrisch von Sauerstoffionen umgeben ist. Die Ni–O Abstände sind in beiden Verbindungen sehr kurz (2.0 bzw. 1.89 Å). Verbindungen der Zusammensetzung BaNiO_x haben ein hexagonales Gitter mit statistischer Besetzung verschiedener Gitterplätze. Magnetische und ESR Messungen bewiesen für Nickel in BaNiO₂ und BaNiO₃ einen diamagnetischen Grundzustand (${}^{1}A_{1g}$); das Auftreten paramagnetischer Nickelionen in BaNiO_x wird diskutiert.

BaNiO₂, BaNiO₃, and phases with the composition BaNiO_x (x = 2.75-2.55) have been prepared. X-ray structure analysis confirmed for BaNiO₂ a planar square arrangement of oxygen around the Ni²⁺; in BaNiO₃ nickel has an octahedral coordination. The Ni-O distances are very short in both compounds (2.0 and 1.89 Å). Compounds with the composition BaNiO_x have a hexagonal crystal lattice and a statistical occupation of various lattice sites. Magnetic and EPR measurements show for nickel ions in BaNiO₂ and BaNiO₃ a diamagnetic ground state (¹A_{1g}); the presence of paramagnetic nickel in BaNiO_x is discussed.

Einleitung

J. J. Lander (1, 3) beschrieb im System BaO–NiO eine Verbindung der Zusammensetzung BaNiO₂, die Ni²⁺ in quadratisch planarer Sauerstoffkoordination enthält und ein magnetisches Moment von 1.83 ungepaarten Elektronenspins haben soll. Aus theoretischen Überlegungen wäre aber zu erwarten, daß Übergangsmetallionen mit d^8 -Elektronenkonfiguration (Ni²⁺) in quadratisch planarer Ligandenfeldanordnung diamagnetisch sind.

Lander (2, 3) untersuchte auch BaNiO₃, in dem Nickel formal vierwertig vorliegt und eine oktaedrische Sauerstoffkoordination aufweist. Für diese Verbindung wurde ein magnetisches Moment von 0.82 ungepaarten Elektronenspins bestimmt. Auch hier ergeben sich Widersprüche, da ein vierwertiges Nickel mit einer d^6 -Elektronenkonfiguration entweder vier parallele Spins, entsprechend einem magnetischen Moment von vier ungepaarten Elektronen hat, oder alle Spins gepaart auftreten, wodurch ein diamagnetisches Verhalten bewirkt wird.

Außerdem wurde von Lander (2, 3) noch über Verbindungen der ungefähren Zusammensetzung Ba₂Ni₂O₅ berichtet, die bei gleichbleibender Kristallstruktur beträchtliche Schwankungen des Sauerstoffgehaltes aufweisen können.

Die angeführten Diskrepanzen zwischen den röntgenographisch bestimmten Kristallstrukturen und den magnetischen Eigenschaften der beschriebenen Verbindungen im System BaO-NiO ließen neuerliche Untersuchungen zweckmäßig erscheinen. In der vorliegenden Arbeit sollte daher auf die Darstellung sehr reiner Präparate Wert gelegt werden, da bekanntlich geringe Beimengungen von Fremdsubstanzen das magnetische Verhalten verändern. Auch wurden für die bisherigen Strukturuntersuchungen vorwiegend Debye-Scherreraufnahmen herangezogen und bei den Strukturfaktorberechnungen verschiedene Vereinfachungen verwendet. Die Röntgenergebnisse sollten daher mit Daten aus Zählrohrgoniometermessungen überprüft und die Strukturfaktorberechnungen mit elektronischen Rechenverfahren durchgeführt werden.

Eine neuerliche Untersuchung des Systems BaO-NiO wurde außerdem angeregt, da in älteren Arbeiten (4, 5, 6) über die Darstellung verschiedener weiterer Bariumoxid-Nickeloxidverbindungen berichtet wurde, die von späteren Bearbeitern (7, 8)nicht mehr hergestellt werden konnten.

BaNiO₂

BaNiO₂ wurde aus BaCO₃ (Merck p.a.) und grünem NiO hergestellt. Die Reaktionsmischung wurde im Nickelschiffchen unter Ölpumpenvakuum auf 970°C erhitzt. Sobald der Druck in der Apparatur unter 1 Torr gesunken war — die Zersetzung des BaCO₃ also beendet war — wurde auf 1100°C erhitzt und die Reaktion zum Abschluß gebracht. Die Proben wurden im Vakuum abgeschreckt. Die hier angegebene Präparationstechnik muß genau eingehalten werden, da sich sonst leicht neben BaNiO₂ eine Verbindung der Zusammensetzung 9 BaNiO₂ · 2BaCO₃ (9) bildet.

Das erhaltene Reaktionsprodukt hatte eine Reinheit von 98–99%. BaNiO₂ entsteht als schwarzes Pulver, das bei sehr feinem Zerreiben hellbraun erscheint. Es ist in Alkalien und Wasser unlöslich, in verdünnten Säuren leicht löslich. Die Röntgendichte beträgt 6.05 g/cm³, für die Dielektrizitätskonstante wurde bei 2.55 MHZ eine Wert von 33 \pm 1 gemessen.

Preßlinge zeigen einen Wechselstromwiderstand von ca. 500 ohm-cm. Beim Erhitzen über 300° C nimmt BaNiO₂ sehr leicht Sauerstoff auf, wobei sich BaNiO₃ bildet.

 $BaNiO_2$ wurde erstmals von Lander (3) röntgenographisch untersucht.

Eigene Gitterkonstantenbestimmungen an Präparaten von BaNiO₂ mit stöchiometrischem Sauerstoffgehalt, die mit Hilfe von Guinieraufnahmen durchgeführt wurden, ergaben nur geringfügige Abweichungen zu den Ergebnissen von Lander.

Die Gitterkonstanten der rhombischen Elementarzelle sind in Tab. I angegeben.

Die Elementarzelle enthält vier Formeleinheiten BaNiO₂. In der Raumgruppe $Cmcm - D_{2h}^{17}$ verteilen sich die Atome auf die in Tab. II angegebenen Punktlagen.

TABELLE I

GITTERKONSTANTEN VON BaNiO₂

Lander	cigene Werte
a = 5.73 Å	$a = 5.735 \pm 0.005$ Å
b = 9.20 Å	$b = 9.190 \pm 0.005$ Å
c = 4.73 Å	$c = 4.755 \pm 0.005$ Å

TABELLE II

PUNKTLAGEN DER ATOME IN BaNiO₂ (neue Werte in eckiger Klammer)

Koordinaten äquivalenter Plätze: (0,0,0), (1/2,1/2,0) +

4 Ni	auf 4 <i>a</i> (0,0,0)		
4 Ba	auf $4c (0, y, 1/4)$	y = 11/32	[y = 0.345]
8 O	auf 8g $(x, y, 1/4)$	x nahe 1/4	[x = 0.25]
		y nahe 1/12	[y = 0.080]

Intensitätsbestimmungen durch Impulszählung an Pulverpräparaten ermöglichten Strukturfaktorberechnungen, die mit Hilfe von FORTRAN Programmen (10) durchgeführt wurden. Diese Berechnungen bestätigen in Prinzip die von Lander angegebene Kristallstruktur. Durch eine geringfügige Veränderung einiger Punktlagen konnte eine bessere Übereinstimmung zwischen beobachteten und berechneten Strukturfaktoren erzielt werden. Mit den in Tab. II in eckigen Klammern angegebenen Koordinaten wurde ein *R*-Wert von 9.9% erhalten $(R = (\Sigma || F_{obs}| - |F_{cale}|| \Sigma |F_{obs}|)$. 100). Beobachtete und berechnete Strukturfaktoren

Beobachtete und berechnete Strukturfaktoren sind in Tab. III zusammengestellt.

Die wichtigsten Atomabstände sind in Tab. IV angegeben.

Die Nickelatome haben eine nahezu quadratisch planare Sauerstoffumgebung. Die Sauerstoffquadrate haben eine gemeinsame Kante und schließen Winkel von 112° ein. Sie sind in Richtung

TABELLE III

Beobachtete und Berechnete Strukturfaktoren für $BaNiO_2$

hk l	$F_{\rm obs}$	Fcalc	hk l	$F_{\rm obs}$	Fcalc
110	40.6	-26.9	311	198.1	-195.5
020	94.6	88.5	222	181.1	217.7
111	230.1	253.6	241	123.4	-117.8
021	202.1	211.6	042	280.5	291.1
200	349.7	364.9	151	246.3	225.7
130	431.9	417.0	330	351.0	324.9
002	199.0	-212.5	060	315.0	256.9
131	75.8	59.7	113	149.6	178.5
040	126.4	-98.3	023	139.1	-167.0
221	284.1	297.3	312	213.8	215.6
112	208.6	270.8	061	94.1	94.7
022	164.3	186.9	400	405.5	340.2
041	250.0	-229.7	242	222.7	230.6
202	70. 9	-80.0	152	106.5	125.1
132	137.6	-123.0			

TABELLE IV

Atomabstände in BaNiO₂

Ba–Ba Ba–O Ni–Ni Ni–O	3.71 und 4.11 Å 2.825 und 2.860 Å 2.375 Å 2.00 Å
Ni–O	2.00 A
0-0	2.795 und 2.865 Å

der c-Achse als Ketten angeordnet. Die Bariumatome sind von 8 Sauerstoffatomen umgeben.

Sehr reine Proben von BaNiO₂ wurden nach der relativan Gouy-Methode mit Feldstärken bis zu 5.2 kOe magnetisch untersucht und ergaben Grammsuszeptibilitäten χ_g von -0.02×10^{-6} bis $+0.15 \times 10^{-6}$ cgs/g. Sobald Spuren metallischen Nickels anwesend waren, wurde eine Feldstärkenabhängigkeit von χ_g beobachtet und die Werte für χ_g stiegen über 0.20×10^{-6} cgs/g, jenachdem wieviel Nickelmetall in den Proben enthalten war. Metallisches Nickel bildet sich sehr leicht während der Präparation, wenn die angegebenen Reaktionsbedingungen nicht genau eingehalten werden oder die Ausgangsmaterialien nicht ganz rein sind.

Die diamagnetische Korrektur der Suszeptibilität wurde durch Summierung über die Ionensuszeptibilitäten berechnet (11) und Werte von -59.0×10^{-6} cgs/mol oder -0.26×10^{-6} cgs/g BaNiO₂ erhalten. Die korrigierten Suszeptibilitäten betragen zwischen +0.24 und $+0.41 \times 10^{-6}$ cgs/g für BaNiO₂.

Die Temperaturabhängigkeit der Suszeptibilität wurde im Bereich von 158°K und 623°K gemessen. Die Funktion $1/\chi_m$ gegen T gehorcht dem Curie-Weiß-Gesetz. Für verschiedene Proben wurden Werte der Weiß-Temperatur Θ von -10°K bis +30°K berechnet.

Auf Grund dieser niedrigen Werte für χ_g ist die Annahme von Diamagnetismus für die Verbindung $BaNiO_2$ berechtigt. Die niedrigen positiven Werte von χ_a werden durch verschiedene Verunreinigungen (NiO, Nickel) oder Fehlstellen, die zur Bildung sehr kleiner Mengen Ni³⁺ führen, hervorgerufen. Die Darstellung von ideal diamagnetischen Übergangsmetalloxidverbindungen — bei einer ideal diamagnetischen Verbindung findet man negative Werte für χ_g — ist praktisch nicht möglich, da man bei diesen Substanzen das Auftreten von Fehlstellen und anderen Effekten, die auch bei diamagnetischen Ionen paramagnetische Beiträge verursachen, nie ganz verhindern kann. Als Beispiel seien Untersuchungen an TiO₂ in seinen verschiedenen Modifikationen angeführt (12).

Die Verbindung BaNiO₂ zeigt kein ESR Signal.

Diskussion des BaNiO₂

Die Untersuchungen bestätigten für BaNiO₂ eine Kristallstruktur mit einer annähernd quadratisch planaren Sauerstoffanordnung um das Nickel. Die Ni²⁺-Ionen mit d^{8} -Elektronenkonfiguration weisen einen diamagnetischen Grundzustand auf, was sich mit Hilfe der Ligandenfeldtheorie erklären läßt.

Im Einelektronenschema lassen sich die Verhältnisse in qualitativer Form übersichtlich darstellen (Abb. 1). Im regulären Oktaederfeld sind die fünffach bahnentarteten d-Orbitale des freien Ions in die tieferliegenden t_{2q} -Zustände (d_{xy}, d_{xz}, d_{yz}) und in die höher liegenden e_q -Zustände $(d_{z^2}, d_{x^2-y^2})$ energetisch aufgespalten. Im quadratisch planaren Feld fehlen zwei der an gegenüberliegenden Ecken des Oktaeders gelegenen Liganden. Das $d_{x^2-y^2}$ — Orbital wird am stärksten abgestoßen, da es direkt zu den vier Liganden hingerichtet ist, das d_{z^2} -Orbital ragt aus der Ligandenebene heraus und wird daher weniger stark abgestoßen. Während das d_{xz} und d_{yz} -Orbital unverändert bleiben, wird das d_{xy} -Orbital ebenfalls energetisch angehoben. Wenn man die Wechselwirkung der Elektronen untereinander im Vergleich zur Wirkung des Ligandenfeldes auf die einzelnen Elektronen vernachlässigt (Methode des starken Feldes), dann kann man die 8d-Elektronen der Reihe nach in die Orbitale ordnen. Ist der Abstand zwischen dem $d_{x^2-y^2}$ -Orbital und dem d_{xy} -Orbital größer als die Spinpaarungsenergie, wird eine paarweise Besetzung des d_{xy} -Orbitals eintreten, im anderen Falle wäre die Anhebung eines Elektrons in das $d_{x^2-y^2}$ -Orbital bei paralleler Spinausrichtung energetisch günstiger.

Wie Maki (13), Ballhausen und Liehr (14), sowie Hartmann und Fischer — Wasels (15) ausgeführt haben, wird im Termschema bei hohen Ligandenfeldstärken der ursprüngliche Grundterm ${}^{3}A_{2g}$ durch einen bei niedrigeren Ligandenfeldstärken energetisch höher liegenden Singuletterm ${}^{1}A_{1g}$ überschnitten, so daß das d^{8} -Ion aus einem paramagnetischen Grundzustand in einen diamagnetischen übergeht.

freies Ion oklaedrisch schwach tetragonal stark tetragonal

ABB. 1. Einelektronenschema für ein d^8 -Ubergangsmetallion.

Der diamagnetische Grundzustand bei $BaNiO_2$ läßt sich auf diese Weise erklären und weist auf ein starkes Ligandenfeld in dieser Verbindung hin.

BaNiO₃

BaNiO₃ wurde bisher durch Reaktion von BaO_2 und NiO 2), Ba(OH)₂ und NiO in feuchtem Sauerstoff 2), Ba(NO₃)₂ und Ni(NO₃)₂ bzw. Ba(NO₃)₂ und NiCO₃ 8) hergestellt. Nach diesen Verfahren werden im Reaktionsprodukt neben dem BaNiO₃ meist wechselnde Mengen an NiO oder anderen Ausgangsmaterialien gefunden. Außerdem schwankt der Sauerstoffgehalt der Präparate stark.

Aus diesen Gründen stellten wir $BaNiO_3$ durch Oxidation von $BaNiO_2$ im Sauerstoffstrom bei 450° bis 600°C her. Nach dieser Methode wurden stets röntgenreine, gut reproduzierbare Präparate erhalten.

BaNiO₃ ist schwarz, in Alkalien und Wasser unlöslich, in verdünnten Säuren leicht löslich, wobei eine Reduktion des vierwertigen Nickels zu Ni²⁺ eintritt. Diese Eigenschaften wurde zur analytischen Bestimmung des höherwertigen Nickels nach Struthers (*16*) verwendet. BaNiO₃ ist kein Peroxid, mit Titansulfat reagiert es negativ. Die Röntgendichte beträgt 6.14 g/cm³. Für die Dielektrizitätskonstante wurde bei 2.55 MHz ein Wert von 11.5 \pm 0.5 bestimmt. Für Preßlinge beträgt der elektrische Wechselstromwiderstand ca. 10⁴ ohm. cm.

Lander (3) und Gushee (8) bestimmten für BaNiO₃ eine hexagonale Elementarzelle mit pseudokubischem Charakter. Dies ist dann der Fall, wenn in der Beziehung:

$$\sin^2 \vartheta = \underbrace{\frac{\lambda^2/4 \cdot 1/a^2 \cdot 4/3 \cdot (h^2 + hk + k^2)}{A}}_{R}$$

der Ausdruck A = B wird. Der pseudokubische Charakter bedingt das Zusammenfallen verschiedener Reflexe.

TABELLE V

GITTERKONSTANTEN VON BaNiO3

Lander (3)	eigene Werte
a = 5.580 Å	$a = 5.631 \pm 0.002$ Å
c = 4.832 Å	$c = 4.808 \pm 0.002$ Å

TABELLE VI

PUNKTLAGEN DER ATOME IN BaNiO₃ (neue Werte in eckiger Klammer)

2 Ba auf 2b $(1/3,2/3,z)$ 2 Ni auf 2a $(0,0,z)$	z = 1/4 z = 0	[z = 0.25] [z = 0.0275]
6 O auf 6c (x, \bar{x}, \bar{z})	$\frac{z}{x} = \frac{1}{6}$	[x = 0.150]
	z = 1/4	[z = 0.275]

Die in dieser Arbeit durch Oxidation von $BaNiO_2$ hergestellten $BaNiO_3$ -Präparate zeigten eine etwas längere *a*-Achse und eine etwas kürzere *c*-Achse als die nach anderen Methoden hergestellten Präparate. Es wurden daher mehr Röntgeninterferenzen erhalten als bei der pseudokubischen Zelle. Die Gitterkonstanten sind in Tab. V angegeben.

Die hexagonale Zelle enthält 2 Formeleinheiten BaNiO₃. Nach Lander (3) verteilen sich die Atome in der Raumgruppe $P6_3mc-C_{6v}^4$ über die in Tab. VI angegebenen Punktlagen.

In dieser Arbeit wurden zunächst mit eigenen Meßdaten und den oben von Lander angegebenen Atomlagen Strukturfaktorberechnungen durchgeführt. Durch geringfügige Veränderung der Koordinaten für Nickel und Sauerstoff (neue Werte in eckiger Klammer) konnte ein *R*-Wert von 8.4% erzielt werden. Die beobachteten und berechneten Strukturfaktoren sind in Tab. VII gegenübergestellt.

Die Atomabstände mit der neuen Koordinaten sind in Tab. VIII angegeben.

Bemerkenswert sind die sehr kurzen Ni-O Abstände, die zweifellos auf einen starken kovalenten Bindungsanteil zurückzuführen sind. Nickel ist in BaNiO₃ von Sauerstoffoktaedern umgeben, die keine röntgenographisch nachweisbare Verzerrung zeigen. Die Oktaeder haben eine gemeinsame

TABELLE VII

Beobachtete und Berechnete Strukturfaktoren für BaNiO $_3$

hk l	$F_{\rm obs}$	F_{calc}	hk l	$F_{ m obs}$	Fcate
100	7.1	6.9	211	35.1	32.8
101	41.2	44.5	202	44.1	47.6
110	63.9	74.1	300	59.8	57.5
200	14.5	10.6	103	30.3	33.1
002	45.0	46.9	212	37.1	38.0
201	59.6	57.1	220	71.9	64.8
102	38.3	42.3	302	21.0	19.5
210	7.3	2.6	203	39.8	39.3
112	21.5	23.2	311	33.5	30.4

TABELLE VIII

ATOMABSTÄNDE IN BaNiO₃

Fläche. Die Sauerstoffpackung entspricht einer hexagonal dichten Kugelpackung mit der schichtfolge *ABAB*. Jedes Ba-Ion ist von 12 Sauerstoffionen umgeben, von denen 6 annähernd in der Ba-Ebene liegen, während je drei in Ebenen darüber und darunter angeordnet sind.

Reine Proben von BaNiO₃ ergaben feldstärkenunabhängige Grammsuszeptibilitäten von +0.02 bis +0.15 × 10⁻⁶ cgs/g. Die diamagnetische Korrektur für BaNiO₃ beträgt -68×10^{-6} cgs/mol oder -0.28×10^{-6} cgs/g (11). Die korrigierten Werte für χ_g liegen zwischen +0.30 bis +0.43 × 10⁻⁶ cgs/g. Eine Temperaturabhängigkeit im Bereich von 158° bis 623°K war nicht feststellbar. Die Ursachen für die kleinen positiven Werte von χ_g sind sicher ähnlich wie bei BaNiO₂.

BaNiO₃ zeigt kein ESR-Signal.

Diskussion des BaNiO₃

In der Verbindung BaNiO₃ liegt ein formal vierwertiges Nickel mit einer oktaedrischen Sauerstoffkoordination vor, das einen diamagnetischen Grundzustand hat. Auf Grund dieser Ergebnisse wird für Nickel eine d^6 Elektronenkonfiguration angenommen, da verschiedene Überlegungen anderer Konfigurationen (d^7 , d^8) von vornherein ausscheiden (17). Eine d^7 -Konfiguration kann unter keinen Umständen diamagnetisch sein, da eine vollständige Kompensation aller Spins unmöglich ist. Eine d^8 -Konfiguration hat im regulären Oktaederfeld immer ein Triplett als Grundzustand und ist daher paramagnetisch.

Betrachtet man das Termdiagramm für ein d^{6} -Ion nach Tanabe und Sugano (18), so erkennt man, daß bei hohen Ligandenfeldstärken eine Termüberschneidung stattfindet. Der bei niedrigen Ligandenfeldstärken auftretende Grundterm ${}^{5}T_{2g}$ ruft ein paramagnetisches Moment von 4 ungepaarten Elektronenspins hervor — wie in CoF $_{6}^{3-}$ Komplexion —, wird aber bei einem kritischen Wert des Ligandenfeldparameters 10 Dq ($Dq/B \sim 2$) vom Singuletterm ${}^{1}A_{1g}$ überschnitten, so daß bei höheren Werten von Dq ein diamagnetischer Grundterm vorliegt.

Wendet man auch hier das Einelektronenschema an, so wird dieses Verhalten qualitativ leicht verständlich. In Abb. 2 sind die beiden Fälle dargestellt. Im schwachen Feld sind die t_{2g} und die e_g -Orbitale nur gering aufgespalten, so daß die Anhebung der Elektronen in die e_g -Orbitale bei paralleler Spinausrichtung energetisch günstiger ist als Spinpaarung in den t_{2g} -Orbitalen. Bei hohen Ligandenfeldstärken sind die t_{2g} - und e_g -Orbitale energetisch so weit getrennt, daß Spinpaarung in den t_{2g} -Orbitalen eintritt. Die beiden wichtigsten Größen, die die Ursache für die Bildung magnetisch normaler und anomaler Komplexe sind, sind der Ligandenfeldparameter 10 Dq und die Spinpaarungsenergie π .

Im Falle des BaNiO₃ sprechen sowohl der kurze Ni–O-Abstand von 1.89 Å als auch die hohe Ladung am Nickel für ein starkes Ligandenfeld. Das

ABB. 2. Magnetisches Verhalten von oktaedrischen d⁶-Komplexen im Einelektronenschema.

Präparations- temperatur (°C)	Formel	$\chi_g imes 10^{-6}$	$\chi'_{g} imes 10^{-6}$
600	BaNiO _{2.95}	0.10	0.38
650	BaNiO _{2.94}	0.27	0.55
700	BaNiO _{2.90}	0.43	0.71

TABELLE IX

Abhängigkeit der χ_g -Werte vom Sauerstoffgehalt

Auftreten von Diamagnetismus für Ni (IV) wurde auch bei der Verbindung K_2NiF_6 (19) beobachtet.

Informationen aus optischen Spektren konnten wegen der schwarzen Farbe des $BaNiO_3$ nicht erhalten werden.

BaNiO₃ mit geringem Sauerstoffdefizit

Bei der Oxidation von $BaNiO_2$ bilden sich zwischen 600° und 700°C Verbindungen mit $BaNiO_3$ Struktur, die aber ein Sauerstoffdefizit aufweisen. Die magnetische Suszeptibilität dieser Präparate zeigt eine ausgeprägte Abhängigkeit von der analytischen Zusammensetzung wie aus Tab. IX entnommen werden kann.

Die Temperaturabhängigkeit der Suszeptibilität dieser Präparate gehorcht im Temperaturbereich von 158° bis 300°K dem Curie-Weiß-Gesetz. Für die Verbindung BaNiO_{2,90} wurde eine Weiß-Temperatur Θ von -18° K berechnet. Das effektive magnetische Moment beträgt 0.66 $\mu_{\rm B}$.

Präparate von BaNiO₃ mit geringem Sauerstoffdefizit zeigen bei ESR-Untersuchungen einen breiten symmetrischen Peak. Für die Verbindung BaNiO_{2.90} ist er in Abb. 3 dargestellt. Aus der Resonanzbedingung $h \cdot v = g \cdot \mu_B \cdot H$ errechnet man einen spektroskopischen Aufspaltungsfaktor g =2.14. Die Peakbreite beträgt 630 Oe. Die magnetischen und ESR-Messungen bestätigten eindeutig das paramagnetische Verhalten dieser Verbindungen mit BaNiO₃-Struktur und Sauerstoffdefizit.

Diskussion von BaNiO₃ mit geringem Sauerstoffdefizit

Da die Konzentration an Nickel in diesen Verbindungen sehr groß ist, experimentell aber paramagnetisches Verhalten gefunden wird, wie es nur magnetisch verdünnten Systemen zukommt, kann gefolgert werden, daß der größte Teil der Nickelionen noch einen diamagnetischen Grundzustand besitzt und nur ein kleiner Teil wegen der Störung der oktaedrischen Sauerstoffkonfiguration um die Nickelionen unkompensierte Elektronenspins aufweist und daher einen paramagnetischen Grundzustand hat. Diese Nickelionen sind statistisch im Gitter verteilt, ihre Konfiguration ist nicht

ABB. 3. ESR-Spektren von BaNiO_{2,90} und BaNiO_{2,55}.

genau bekannt. Der wahrscheinlichste Zustand dürfte ein d^7 -low-spin (magnetisch anomales) Ni (III) sein. Der g-Faktor von 2.14 liegt in der Nähe jener g-Faktoren für Ni (III), wie sie in MgO (g = 2.17) (20, 21), in Al₂O₃ (g = 2.14) (22), und in SrTiO₃ (g = 2.18) (23) gemessen wurden. Für Ni (II) liegen die g-Faktoren in den erwähnten Verbindungen immer über 2.20.

Die große Peakbreite des ESR-Signals kann durch die unregelmäßige Fehlordnung in der Umgebung der Nickelionen erklärt werden, wodurch sich die Elektronenzustände energetisch geringfügig unterscheiden. Aus diesem Grund ist auch die Angabe einer exakten Elektronenkonfiguration nicht möglich.

BaNiO_x

Eine Verbindung, die in der Literatur (2) als $Ba_2Ni_2O_5$ bzw. $Ba_3Ni_3O_8$ bezeichnet wird, entsteht beim Erhitzen von $BaNiO_3$ oder durch direkte Oxidation von $BaNiO_2$ im Sauerstoffstrom zwischen 750° und 1100°C. Die Zusammensetzung dieser Produkte schwankt zwischen $BaNiO_{2.73}$ und $BaNiO_{2.55}$ ohne daß sich die Kristallstruktur wesentlich ändert.

BaNiO_x verhält sich chemisch ähnlich wie BaNiO₃. Die Präparate sind grauschwarz, die Dielektrizitätskonstante hat bei 2.55 MHz einen Wert von 31 ± 1 . Beträgt bei Temperaturen von 750° bis 1100°C der Sauerstoffpartialdruck zwischen 150 und ca. 1 Torr, zersetzt sich BaNiO_x und es bildet sich BaNiO₂. Dieses BaNiO₂ enthält mehr Sauerstoff, als es der Formel entspricht, was sich unter anderem in einer geringfügigen Veränderung der Gitterkonstanten äußert. Wird der Sauerstoffpartialdruck bei den angegebenen Temperaturen unter 1 Torr gesenkt, entsteht röngtenreines BaNiO₂ mit der stöchiometrischen Zusammensetzung, das in allen Eigenschaften mit einem aus BaCO₃ und NiO hergestellten übereinstimmt.

Das Röntgenpulverdiagramm der Verbindung BaNiO_x läßt sich hexagonal indizieren, Die Reflexe der Form (hk0) sind viel schärfer als die Reflexe (hkl) mit *l* größer als 0. Der auftretende Satz von Netzebenen stimmt etwa mit jenem der Verbindung BaNiO₃ überein, jedoch ist die Lage der Reflexe wegen der verschiedenen Gitterparameter verändert. Die Intensitäten der Reflexe (hk0) sind bei beiden Phasen annähernd gleich, während die Reflexe (hkl) große Unterschiede aufweisen. Eine Abhängigkeit der Gitterparameter und der Intensitäten von der analytisch bestimmten Zusammensetzung wird beobachtet (Tab. X).

TABELLE X

ABHÄNGIGKEIT DER GITTERKONSTANTEN VON DER Zusammensetzung des BaNiO_x

$a = 5.705 \pm 0.01$ Å	$c = 4.335 \pm 0.005$ Å für $x = 2.73$
<i>a</i> = 5.705 + 0.01 Å	$c = 4.311 \pm 0.005$ Å für $x = 2.55$

Alle folgenden Untersuchungen beziehen sich auf Präparate der Zusammensetzung BaNiO_{2.55}, die bei 1100°C und 150 Torr Sauerstoff hergestellt wurden.

Für die ersten informativen Strukturfaktorberechnungen wurde die einfache hexagonale Zelle sowie die Raumgruppe und die Atomlagen von BaNiO₃ herangezogen, wobei lediglich die Besetzung der Sauerstoffplätze verringert wurde. Ein Vergleich der beobachteten und berechneten Strukturfaktoren ergab einen *R*-Wert von 28 %.

Weitere Berechnungen wurden in der Raumgruppe $P6_3$ bei gleichen Zellabmessungen durchgeführt. Durch Variation der Atomkoordinaten konnte der *R*-Wert auf 16.7% gesenkt werden, wobei eine statistische Besetzung der 6 Sauerstoffpositionen durch 5 Sauerstoffionen angenommen wurde.

Da die einfache hexagonale Zelle die tatsächliche Struktur des $BaNiO_x$ nur näherungsweise beschreiben kann (2), wurde die Zelle für weitere Berechnungen vergrößert. Die Seite a der hexagonalen Zelle wurde um den Faktor $\sqrt{3}$ verlängert und die Seite c verdreifacht. Die Gitterkonstanten der vergrößerten hexagonalen Zelle des BaNiO₃ betragen:

$$a = 9.85$$
 Å und $c = 13.0$ Å.

Das Volumen der hexagonalen Zelle beträgt 1092 Å³, sie enthält 18 Formeleinheiten BaNiO_x. Für den neuen Satz von Reflexen gelten folgende Auslöschungsbedingungen:

(hkl): -h + k + l = 3n (Rhomboederbedingung).

Die weiteren Strukturfaktorberechnungen wurde in der Raumgruppe $R\overline{3}c$ durchgeführt. Die beste Übereinstimmung zwischen beobachteten und berechneten Strukturfaktoren wurde mit den in Tab. XI angegebenen Punktlagen erzielt (R = 13.0%).

Die beobachteten und berechneten Strukturfaktoren sind in Tab. XII angegeben.

Auf Grund der angegebenen Punktlagen ergeben sich für Nickel 48 und für Sauerstoff 108 Gitterplätze, von denen nur 18 bzw. 45 besetzt sind. Die Besetzung der Gitterplätze erfolgt statistisch, was in Übereinstimmung zu der Beobachtung steht, daß

TABELLE XI

PUNKTLAGEN DER ATOME IN BaNiO_x

Koordinaten aequivalent	er Plätze: (0,0,0), (1/3,	2/3,2/3),
(2/3, 1/3, 1/3) +		
18 Ba auf 18e (x,0,1/4)	x = 0.333	
18 Ni auf 12c (0,0,z)	$z_1 = 0.129$	
	$z_2 = 0.296$	
	$z_3 - 0.462$	
	$z_4 = 0.629$	
45 O auf $36f(x, y, z)$	$x_1 = 0.166 y_1 = 0.02$	$z_1 = 0.052$
	$x_2 = 0.975 y_2 = 0.83$	3 $z_2 = 0.552$
	$x_3 = 0.160 \ y_3 = 0$	$z_3 = 0.448$

sich der Sauerstoffgehalt dieser Präparate stark ändern kann, ohne daß sich der Strukturtypus ändert.

BaNiO_x zeigt eine deutliche Abhängigkeit der magnetischen Suszeptibilität von der analytischen Zusammensetzung. Für x = 2.73 beträgt $\chi_g = 0.70 +$ 0.05 und für x = 2.55 beträgt $\chi_g = 1.40 \pm 0.1 \times 10^{-6}$ cgs/g. Die korrigierten Werte betragen 0.95 bzw. 1.70×10^{-6} cgs/g.

Die Temperaturabhängigkeit der magnetischen Suszeptibilität der Verbindung BaNiO_{2.55} wurde im Temperaturbereich von 158° bis 315°K verfolgt. In Abb. 4 ist die Funktion $1/\chi'_m$ gegen T gezeichnet. Man erkennt, daß die Funktion ein Maximum hat und über den gemessenen Temperaturverlauf nicht durch das Curie-Weiß Gesetz beschrieben wird.

Obwohl unter diesen Voraussetzungen eine Extrapolation des annähernd linearen Teiles der Funktion

ΓABELLI	E XII
---------	-------

BEOBACHTETE UND BERECHNETE STRUKTURFAKTOREN FÜR BaNiO_x

hk l	$F_{\rm obs}$	F_{calc}	hk l	$F_{\rm obs}$	Fcalc
110	11.5	14.6	226	73.7	74.1
113	124.9	115.7	060	180.1	158.4
030	181.3	194.0	146	60.2	52.8
220	46.6	27.7	119	33.6	79.9
006	146.0	136.2	336	81.6	78.8
223	135.3	135.6	253	88.5	76.3
116	57.0	69.2	229	48.7	65.8
140	23.8	4.1	066	79.4	79.2
036	104.5	105.5	149	44.0	63.6
143	90.6	83.8	173	52.5	58.7
330	159.4	149.0			

zwischen 158° und 200°K gegen O eine sehr grobe Näherung darstellt, wurde auf diese Weise eine mögliche Weißtemperatur von $\Theta = -200$ °K ermittelt.

Die ESR-Spektren von zwei Proben der Zusammensetzung BaNiO_{2.55} sind in Abb. 3 gezeigt. Die g-Faktoren betragen 2.19 und 2.22. Die Peakbreite liegt für beide Präparate bei etwa 220 Oe.

Diskussion des BaNiO_x

Die mittlere Oxidationsstufe des Nickels in $BaNiO_{2.55}$ liegt bei etwa 3+. Allerdings kann man weder aus den magnetischen noch aus den ESR-

ABB. 4. Temperaturabhängigkeit der magnetischen Suszeptibilität von BaNiO2.55.

Messungen entscheiden, ob dreiwertige Nickelionen oder zwei- und vierwertiges Nickel in der Verbindung vorhanden ist. Das geringe magnetische Moment bei Zimmertemperatur könnte nämlich sowohl von einem Ni 3+ in low-spin d^7 Konfiguration hervorgerufen werden, als auch von Ni 2+ in d^8 und Ni 4+ in d^6 -Konfiguration, soferne diese im Verhältnis 1:1 vorliegen.

Das ESR-Spektrum ermöglicht auch keine eindeutige Entscheidung, da ein isotroper g-Faktor von 2.19 bis 2.22 sowohl von einer d^7 -Ni (III)-Konfiguration als auch von einer d^8 -Ni(II)-Konfiguration stammen kann. Außerdem ist nicht bewiesen, ob die Koordination des Nickels in BaNiO_x tatsächlich oktaedrisch ist.

Die Temperaturabhängigkeit der Suszeptibilität läßt sich keinem der bekannten magnetischen Phänomene zuordnen. Ein ähnlicher Fall wurde bei LaCoO₂ (24, 25) beobachtet. Dort tritt bei 500°K eine über etwa 100° reichende gleichbleibende Suszeptibilität auf. Oberhalb und unterhalb dieses Temperaturbereiches gehorcht die Funktion $1/\chi_m$ gegen T dem Curie-Weiß-Gesetz. Goodenough (26) interpretiert dieses anomale magnetische Verhalten mit dem Übergang des dreiwertigen Kobalts aus dem low-spin Zustand in den high-spin Zustand. Durch die thermische Ausdehnung des Gitters wird der Kristallfeldparameter 10 Dg soweit varändert, daß die Spinpaarungsenergie in derselben Größenordnung liegt. Über einen großen Temperaturbereich hinweg kommt es dadurch zur Ausbildung eines Gleichgewichtes zwischen diesen beiden Größen, so daß der magnetisch normale (high-spin) und der magnetisch anomale (low-spin) Zustand des Co (III) nebeneinander vorliegen.

Überträgt man diese Überlegungen auf BaNiO_x, so müßte ein Übergang von Ni(III) aus der low-spin in die high-spin Konfiguration angenommen werden. Außerdem könnte dieses komplexe Verhalten der Suszeptibilität durch einen magnetischen Ordnungsprozeß, entweder ferromagnetisch oder antiferromagnetischer Natur, hervorgerufen werden. Um genauere Aussagen machen zu können wäre es wünschenswert, weitere Untersuchungen an Einkristallen durchzuführen.

Dem Fonds zur Förderung der wissenschaftlichen Forschung in Wien danken wir für die leihweise Überlassung der Röntgenapparatur sowie der ESR. Sämtliche Berechnungen wurden am Rechenzentrum Graz mit einer UNIVAC 494 durchgeführt.

Literaturverzeichnis

- 1. J. J. LANDER, J. Amer. Chem. Soc. 73, 2450 (1951).
- 2. J. J. LANDER UND L. A. WOOTEN, J. Amer. Chem. Soc. 73, 2452 (1951).
- 3. J. J. LANDER, Acta Cryst. 4, 148 (1951).
- E. DUFAU, Compt. Rend. 123, 495 (1896); Ann. Chem. Phys. 7, 12 (1897).
- D. K. GORALEVICH, J. Russ. Chem. Soc. 62, 879 (1930); ibid., 1165, 1577.
- B. A. PETRAV UND B. ORMONT, J. Gen. Chem. (U.S.S.R.) 8, 563 (1938).
- 7. E. A. THURBER, Thesis, Polytechnic Inst. of Brooklyn, 1937.
- 8. B. E. GUSHEE, Thesis, University of Connecticut, 1956.
- K. TORKAR, H. KRISCHNER, UND E. WILL, Mh. Chem. 100, 825 (1969).
- 10. V. ALBANO, A. DOMENICANO, UND A. VACIAGO, Gazz. Chim. Ital. 96, 922 (1966).
- 11. LANDOLT BÖRNSTEIN, Neue Serie, Band 2 (1966).
- 12. F. E. SENFTLE UND A. N. THORPE, *Phys. Rev.* 175, 1144 (1968).
- 13. G. MAKI, J. Chem. Phys. 28, 651 (1958).
- 14. C. BALLHAUSEN UND A. D. LIEHR, J. Amer. Chem. Soc. 81, 538 (1958).
- H. HARTMANN UND H. FISCHER-WASELS, Z. Phys. Chem. N.F. 4, 297 (1955).
- 16. J. D. STRUTHERS, J. Amer. Chem. Soc. 59, 1849 (1937).
- L. PAULING, J. Amer. Chem. Soc. 53, 1367 (1931); ibid., 54, 988 (1932).
- Y. TANABE UND S. SUGANO, J. Phys. Soc. Japan 9, 766 (1954).
- 19. R. HOPPE Angew. Chem. 62, 339 (1950).
- 20. U. HÖCHLI UND K. A. MÜLLER, Phys. Lett. 15, 5 (1965).
- 21. A. CIMINO, D. CORDISCHI et al. Ric. Sci. Rend. 8, 153 (1965).
- 22. S. GESCHWIND UND P. P. REMEIKA, J. Appl. Phys. Suppl. 33, 370 (1962).
- 23. K. A. MÜLLER UND W. BERLINGER, Phys. Rev. 186, 361 (1969).
- 24. G. H. JONKER UND J. H. VAN SANTEN, *Physica* 19, 120 (1953).
- 25. W. C. KOEHLER UND E. O. WOLLAN, J. Phys. Chem. Solids 2, 100 (1957).
- 26. J. B. GOODENOUGH et al., J. Phys. Chem. Solids 5, 107 (1958).